

LA-UR-21-28303

Approved for public release; distribution is unlimited.

Title: Mechanisms delaying glacier retreat in the presence of ocean

temperature variability at Thwaites Glacier, Antarctica

Author(s): Hoffman, Matthew James

Intended for: DOE Regional & Global Model Analysis (RGMA) program webinar series on

High-Latitude Processes and Feedbacks

Issued: 2021-08-19

Mechanisms delaying glacier retreat in the presence of ocean temperature variability at Thwaites Glacier, Antarctica

Matthew Hoffman Xylar Asay-Davis Stephen Price

Los Alamos National Laboratory

Jeremy Fyke

Associated Engineering

Mauro Perego

Sandia National Laboratories

Biological and Environmental Research (BER) Scientific Discovery through Advanced Computing (SciDAC)

 LANL Lab Directed Research & Development Early Career Research Program

National Energy Research Scientific Computing Center (NERSC)

Hoffman, M.J., Asay-Davis, X., Price, S.F., Fyke, J., Perego, M., 2019. Effect of Subshelf Melt Variability on Sea Level Rise Contribution From Thwaites Glacier, Antarctica. J. Geophys. Res. Earth Surf. 124, 2798–2822, doi:10.1029/2019JF005155

Thwaites Glacier

Marine ice sheet with overdeepened basin – 65 cm SLE

Marine Ice Sheet Instability predicted

Los Alamos National Laboratory

Subshelf melting controlled by access of CDW

Subshelf melting controlled by access of CDW

Climate variability affecting Antarctic subshelf melting

- El Nino/Southern Oscillation (2-7 yr)
- Southern Annular Mode (20-30 yr)
- Pacific Decadal Oscillation (15-25 yr, 50-70 yr)
- Atlantic Multidecadal Oscillation (50-80 yr)

How might climate variability affect marine ice sheet stability?

Los Alamos National Laboratory

Model setup

- MPAS-Albany Land Ice (MALI)
- 3d First-order momentum balance approx. (Blatter/Pattyn)
- Variable resolution regional mesh (1-8 km)
- Thickness, bed elevation from BEDMAP2
- Linear basal friction law
- Basal friction parameter optimized from InSAR surface velocity
- Fixed temperature field (pers. comm. Frank Pattyn)
- Calving front fixed in time
- SMB from RACMO2
- Validated by observed grounding line flux transient

Ice shelf basal melting parameterization

- $M = C TF_{local} TF_{cavity}$
- T_{cavity}: Mean ambient temperature
- T_{local}: Melt plume temperature profile based on ambient temperature at GL
- Inclusion of sill depth blocking deeper water

Ice shelf basal melting parameterization

- $M = C TF_{local} TF_{cavity}$
- T_{cavity}: Mean ambient temperature
- T_{local}: Melt plume temperature profile based on ambient temperature at GL
- Inclusion of sill depth blocking deeper water

We add variability to depth relation to mimic changes in CDW depth

Sinusoidal variations:

- amplitude: 150, 300 m
- period: 5, 20, 70 yr
- phase: [0, 2π)

Results

Control

Amplitude=300m Period=20 yr

Results: Ocean variability introduces variability in glacier retreat

Results: Single ensemble (amplitude=300 m, period=70 yr)

Results: All ensembles

Mechanisms for delay in mass loss

1. Asymmetric melt forcing – primary mechanism (~75% of delay)

Mechanisms for delay in mass loss

1. Asymmetric melt forcing

Warm ocean cavity can't get much warmer:

- Bottom of thermocline near sill depth
- Deepening CDW → lower ocean temperature at GL
- Shoaling CDW → little change in ocean temperature at GL

Mechanisms for delay in mass loss

2. Nonlinear ice dynamic response to ice shelf melting

- secondary mechanism (~25% of delay)
 - Decreasing melt → large decrease in mass loss
 - Increasing melt → small increase in mass loss

Conclusions

Ocean temperature variability affects grounding line evolution and glacier mass loss

- Variable runs always retreat less than steady runs
 - -Consequence of local ocean density structure and bathymetry
- 10% less SLR for plausible large amplitude, long period variability after hundreds of years
- Effects small (~3%) for realistic (?) modes of variability

 Caveats: parameterized melt, simplistic variability, uncertain bed topography

Related work

Ice Sheets

- Improved ice sheet physics (calving, subglacial hydrology, GIA)

Climate

- Prognostic subshelf melt rates in E3SM
- Coupling of MALI and MPAS-Ocean in E3SM

Sea Level

 Regional sea level projections from ice sheet, glacier, and ocean changes

Sophie Coulson (L

Questions?

Delivering science and technology to protect our nation and promote world stability

Acknowledgements:

- Department of Energy Office of Science Biological and Environmental Research (BER) Advanced Scientific Computing Research (ASCR)
- LANL Lab Directed Research & Development Early Career Research Program
- National Energy Research Scientific Computing Center (NERSC)

